Torque Curve Optimization of Ankle Push-Off in Walking Bipedal Robots Using Genetic Algorithm
نویسندگان
چکیده
منابع مشابه
Robots in human biomechanics--a study on ankle push-off in walking.
In biomechanics, explanatory template models are used to identify the basic mechanisms of human locomotion. However, model predictions often lack verification in a realistic environment. We present a method that uses template model mechanics as a blueprint for a bipedal robot and a corresponding computer simulation. The hypotheses derived from template model studies concerning the function of h...
متن کاملImpulsive ankle push-off powers leg swing in human walking.
Rapid unloading and a peak in power output of the ankle joint have been widely observed during push-off in human walking. Model-based studies hypothesize that this push-off causes redirection of the body center of mass just before touch-down of the leading leg. Other research suggests that work done by the ankle extensors provides kinetic energy for the initiation of swing. Also, muscle work is...
متن کاملA unified perspective on ankle push-off in human walking.
Muscle-tendon units about the ankle joint generate a burst of positive power during the step-to-step transition in human walking, termed ankle push-off, but there is no scientific consensus on its functional role. A central question embodied in the biomechanics literature is: does ankle push-off primarily contribute to leg swing, or to center of mass (COM) acceleration? This question has been d...
متن کاملFall Avoidance and Recovery for Bipedal Robots using Walking Sticks
For humanoid robots to replace humans in dangerous environments, they require a robust fall prevention system that can detect falls, prevent major damage and recover back up to continue on with the task. This paper introduces a system that is capable of fall detection, mitigation and recovery in a robot equipped with walking sticks. Walking sticks allow the humanoid robot to extend its support ...
متن کاملData Driven Computational Model for Bipedal Walking and Push Recovery
In this research, we have developed the data driven computational walking model to overcome the problem with traditional kinematics based model. Our model is adaptable and can adjust the parameter morphological similar to human. The human walk is a combination of different discrete sub-phases with their continuous dynamics. Any system which exhibits the discrete switching logic and continuous d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Sensors
سال: 2021
ISSN: 1424-8220
DOI: 10.3390/s21103435